Saturday, March 31, 2012

Mikoriza

Mikoriza



Mikoriza Amanita (bercak-bercak putih) menginfeksi ujung akar.
Mikoriza adalah kelompok fungi (jamur) yang bersimbiosis dengan tumbuhan tingkat tinggi (tumbuhan berpembuluh, Tracheophyta), khususnya pada sistem perakaran. Terdapat juga fungi yang bersimbiosis dengan fungi lainnya, tetapi sebutan mikoriza biasanya adalah untuk mereka yang menginfeksi akar.
Mikoriza memerlukan akar tumbuhan untuk melengkapi daur hidupnya. Sebaliknya, beberapa tumbuhan bahkan ada yang tergantung pertumbuhannya dengan mikoriza. Beberapa jenis tumbuhan tidak tumbuh atau terhambat pertumbuhannya tanpa kehadiran mikoriza di akarnya. Sebagai misalnya, semaian pinus biasanya gagal tumbuh setelah pemindahan apabila tidak terbentuk jaringan mikoriza di sekitar akarnya. Hanya sedikit kelompok tumbuhan yang tidak menjadi simbion, seperti dari Brassicaceae, Commelinaceae, Juncaceae, Proteaceae, Capparaceae, Cyperaceae, Polygonaceae, Resedaceae, Urticaceae, dan Caryophyllales.
Mikoriza dapat diinokulasi secara buatan. Namun demikian, inokulasi mikoriza komersial memerlukan bantuan mikoriza lokal, misalnya dengan menambahkan tanah dari tempat asal tumbuhan. 
Ektomikoriza

Ektomikoriza menginfeksi permukaan luar tanaman dan di antara sel-sel ujung akar. Akibat serangannya, terlihat jalinan miselia berwarna putih pada bagian rambut-rambut akar, dikenal sebagai hartig net. Serangan ini dapat menyebabkan perubahan morfologi akar. Akar-akar memendek, membengkak, bercabang dikotom, dan dapat membentuk pigmen. Infektivitas tergantung isolat dan kultivar tumbuhan inang. Tumbuhan inangnya biasanya tumbuhan tahunan atau pohon. Beberapa di antaranya merupakan komoditi kehutanan dan pertanian seperti sengon, jati, serta beberapa tanaman buah seperti mangga, rambutan, dan jeruk. Selain itu pohon-pohon anggota Betulaceae, Fagaceae, dan Pinaceae juga menjadi inangnya. Pada umumnya ektomikoriza termasuk dalam Basidiomycota. 
Endomikoriza 
Endomikoriza menginfeksi bagian dalam akar, di dalam dan di antara sel-sel ujung akar (root tip). Hifa masuk ke dalam sel atau mengisi ruang-ruang antarsel. Jenis mikoriza ini banyak ditemukan pada tumbuhan semusim yang merupakan komoditi pertanian penting, seperti kacang-kacangan, padi, jagung, beberapa jenis sayuran dan tanaman hias. Infeksi ini tidak menyebabkan perubahan morfologi akar, tetapi mengubah penampilan sel dan jaringan akar. Berdasarkan tipe infeksinya, dikenal tiga kelompok endomikoriza: ericaceous (Ericales dengan sejumlah Ascomycota), orchidaceous (Orchidaceae dengan sekelompok Basidiomycota), dan vesikular arbuskular (sejumlah tumbuhan berpembuluh dengan Endogonales, membentuk struktur vesikula (gelembung) dan arbuskula dalam korteks akar) disingkat MVA.

Mikoriza vesikular-arbuskular

MVA dan ektomikoriza berguna bagi pertanian dan kehutanan. Ektomokoriza dapat ditumbuhkan secara aksenik di laboratorium sehingga mudah dikembangkan. MVA sulit ditumbuhkan secara aksenik (media buatan) sehingga MVA dianggap merupakan simbion obligat (wajib).
Vesikula berbentuk butiran-butiran di dalam sitoplasma yang mengandung lipid dan menjadi alat reproduksi vegetatif mikoriza, khususnya bila sel pecah akibat rusaknya korteks akar. Arbuskula berwujud kumpulan hifa yang menembus plasmalema dan membantu transportasi hara di dalam sel tumbuhan. Pembentukan vesikula dan arbuskula dalam sel menunjukkan bahwa simbiosis telah terjadi dengan sempurna dan tanaman sudah dapat menikmati hasil kerja sama dengan mikoriza berupa meningkatnya ketersediaan unsur hara yang diserap dari dalam tanah.
Selain vesikula dan arbuskula, terbentuk hifa eksternal yang dapat membantu memperluas ruang penyerapan hara oleh akar. Pada bawang merah, misalnya, panjang hifa eksternal dapat mencapai 80 cm per satu cm panjang akar. Di luar akar, hifa dapat membentuk sporangium yang menghasilkan spora sebagai alat reproduksi.
MVA banyak membawa keuntungan bagi tumbuhan simbionnya. Ia memperbaiki hasil tumbuhan dan mengurangi masukan pupuk pada tanaman pertanian. Ini terjadi karena MVA meningkatkan ketersediaan beberapa hara di tanah yang diperlukan tanaman, terutama fosfat. Peningkatan penyerapan fosfat diiringi dengan peningkatan penyerapan hara lain, seperti nitrogen (N), seng (Zn), tembaga (Cu), dan belerang (S). Selain itu, MVA memperluas ruang tanah yang dapat dijangkau oleh tanaman inang. Jeruk, umpamanya, dikenal responsif terhadap inokulasi MVA. Inokulasi ini dapat mengarah pada menurunnya penggunaan pupuk P. Selain meningkatkan ketersediaan hara, MVA meningkatkan toleransi tumbuhan terhadap kurangnya pasokan air. Luasnya jaringan hifa di tanah membantu akar menyerap air. MVA memengaruhi ketahanan tumbuhan inang terhadap serangan penyakit. MVA, tergantung jenisnya, dapat mengurangi pengaruh serangan jamur patogen. Demikian pula, juga dapat mengurangi serangan nematoda. Sebaliknya, tumbuhan yang terinfeksi MVA menurun ketahanannya terhadap serangan virus.
Pengaruh MVA lain yang pernah teramati adalah dukungannya terhadap simbiosis antara bakteri bintil akar dan polong-polongan, produksi giberelin oleh Gibberella mosseae, memengaruhi sintesis fitohormon tertentu, dan memperbaiki struktur agregasi tanah.
CARA PENGGUNAAN
1. Mikoriza Plus ditaburkan secara merata pada permukaan lahan di persemaian sebagai pupuk dasar, kemudian setelah rata, benih disemaikan (semai benih jangan terlalu rapat)
2. Ketika benih berkecambah, spora akan hidup dan menempel di akar. Mikoriza Plus membutuhkan waktu ± 7 hari untuk dapat berkembang aktif dan bersimbiosis dengan akar tanaman,
3. Mikoriza Plus dapat disebarkan pada tanaman yang sudah tumbuh di persemaian minimal ± 7 hari sebelum cabut bibit (Transplanting/Aklimatisasi).
4. Mikoriza Plus juga dapat diaplikasikan di pertanaman dengan cara mencampur 20 kg Mikoriza Plus dengan Bokhasi 2 Kw kemudian disebarkan secara merata di pertanaman.
5. Aplikasi mikoriza Plus dapat dicampur dengan pupuk makro tunggal maupun majemuk seperti (N, P, K, NPK, KCl, Za, Phonska dll)
6. Tidak diperkenankan mencampur Mikoriza Plus dengan pupuk mikro yang memiliki kandungan logam berat di atas 5% seperti (Fe, Zn, Mn, Cu, dls)

DOSIS
1. 20Kg Mikoriza Plus/Ha.  Untuk tanaman di persemaian.
2. 20Kg Mikoriza Plus + 2 Kw Bokhasi/Ha. Untuk di pertanaman.

MANFAAT
1. Menekan kebutuhan penggunaan pupuk kimia terutama N, P dan K secara bertahap hingga 30 %.
2. Meningkatkan rendemen dan hasil Produksi.
3. Memperkuat batang tanaman dan membantu secara aktif dalam pengisian buah.
4. Memperbaiki kapasitas tukar kation (KTK) di dalam tanah.
5. Memperbaiki sifat Fisik, Kimia dan Biologi Tanah.
6. Meningkatkan jangkauan akar dengan dibantu oleh miselia Mikoriza Plus. Sehingga nutrisi yang tidak tersentuh oleh akar mampu di transfer oleh Mikoriza dan disalurkan ke akar tanaman.
7. Meningkatkan ketahanan tanaman terhadap pathogen akar dan kekeringan.
8. Mikoriza plus mampu meningkatkan ketersediaan unsur  Phosphat, menguraikan Phosphat yang berikatan, dan juga unsur hara lainnya.
9. Mikoriza Plus dapat di gunakan untuk Tanaman Padi -Palawija, Hortikultura, Tanaman Perkebunan berbatang Lunak.

Rhizopus oligosporus

Rhizopus oligosporus

?Rhizopus oligosporus
Rhizopus oligosporus pada Tempe
Rhizopus oligosporus pada Tempe
Klasifikasi ilmiah
Kerajaan: Fungi
Divisi: Zygomycota
Kelas: Zygomycetes
Ordo: Mucorales
Famili: Mucoraceae
Genus: Rhizopus
Spesies: R. oligosporus
Nama binomial
Rhizopus oligosporus
Saito
Rhizopus oligosporus merupakan kapang dari filum Zygomycota yang banyak menghasilkan enzim protease. R. oligosporus banyak ditemui di tanah, buah, dan sayuran yang membusuk, serta roti yang sudah lama.
R. oligosporus termasuk dalam Zygomycota yang sering dimanfaatkan dalam pembuatan tempe dari proses fermentasi kacang kedelai, karena R. oligosporus yang menghasilkan enzim fitase yang memecah fitat membuat komponen makro pada kedelai dipecah menjadi komponen mikro sehingga tempe lebih mudah dicerna dan zat gizinya lebih mudah terserap tubuh. Fungi ini juga dapat memfermentasi substrat lain, memproduksi enzim, dan mengolah limbah. Salah satu enzim yang diproduksi tersebut adalah dari golongan protease. 

Karakteristik
R. oligosporus mempunyai koloni abu-abu kecoklatan dengan tinggi 1 mm atau lebih. Sporangiofor tunggal atau dalam kelompok dengan dinding halus atau agak sedikit kasar, dengan panjang lebih dari 1000 mikro meter dan diameter 10-18 mikro meter. Sporangia globosa yang pada saat masak berwarna hitam kecoklatan, dengan diameter 100-180 mikro meter. Klamidospora banyak, tunggal atau rantaian pendek, tidak berwarna, dengan berisi granula, terbentuk pada hifa, sporangiofor dan sporangia. Bentuk klamidospora globosa, elip atau silindris dengan ukuran 7-30 mikro meter atau 12-45 mikro meter x 7-35 mikro meter.

Kondisi pertumbuhan

R. oligosporus dapat tumbuh optimum pada suhu 30-35 °C, dengan suhu minimum 12 °C, dan suhu maksimum 42 °C.

Manfaat

Beberapa manfaat dari R. oligosporus antara lain meliputi aktivitas enzimatiknya, kemampuan menghasilkan antibiotik alami yang secara khusus dapat melawan bakteri gram positif, biosintesa vitamin-vitamin B, kebutuhannya akan senyawa sumber karbon dan nitrogen, perkecambahan spora , dan penetrisi miselia jamur tempe ke dalam jaringan biji kedelai.

Aspergillus niger

Aspergillus niger

?Aspergillus niger
Mikrograf dari A. niger yang ditumbuhkan pada medium Sabouraud agar dengan perbesaran 100x
Mikrograf dari A. niger yang ditumbuhkan pada medium Sabouraud agar dengan perbesaran 100x
Klasifikasi ilmiah
Domain: Eukaryota
Kerajaan: Fungi
Filum: Ascomycota
Upafilum: Pezizomycotina
Kelas: Eurotiomycetes
Ordo: Eurotiales
Famili: Trichocomaceae
Genus: Aspergillus
Spesies: A. niger
Nama binomial
Aspergillus niger

Aspergilus niger merupakan fungi dari filum ascomycetes yang berfilamen, mempunyai hifa berseptat, dan dapat ditemukan melimpah di alam. Fungi ini biasanya diisolasi dari tanah, sisa tumbuhan, dan udara di dalam ruangan. Koloninya berwarna putih pada Agar Dekstrosa Kentang (PDA) 25 °C dan berubah menjadi hitam ketika konidia dibentuk. Kepala konidia dari A. niger berwarna hitam, bulat, cenderung memisah menjadi bagian-bagian yang lebih longgar seiring dengan bertambahnya umur.

Habitat

A. niger dapat tumbuh optimum pada suhu 35-37 °C, dengan suhu minimum 6-8 °C, dan suhu maksimum 45-47 °C.Selain itu, dalam proses pertumbuhannya fungi ini memerlukan oksigen yang cukup (aerobik). A. niger memiliki warna dasar berwarna putih atau kuning dengan lapisan konidiospora tebal berwarna coklat gelap sampai hitam.

Metabolisme

Dalam metabolismenya A. niger dapat menghasilkan asam sitrat sehinga fungi ini banyak digunakan sebagai model fermentasi karena fungi ini tidak menghasilkan mikotoksin sehingga tidak membahayakan. A. niger dapat tumbuh dengan cepat, oleh karena itu A. niger banyak digunakan secara komersial dalam produksi asam sitrat, asam glukonat, dan pembuatan berapa enzim seperti amilase, pektinase, amiloglukosidase, dan selulase.
Selain itu, A. niger juga menghasilkan gallic acid yang merupakan senyawa fenolik yang biasa digunakan dalam industri farmasi dan juga dapat menjadi substrat untuk memproduksi senyawa antioksidan dalam industri makanan.
A. niger dalam pertumbuhannya berhubungan langsung dengan zat makanan yang terdapat dalam substrat, molekul sederhana yang terdapat disekeliling hifa dapat langsung diserap sedangkan molekul yang lebih kompleks harus dipecah dahulu sebelum diserap ke dalam sel, dengan menghasilkan beberapa enzim ekstra seluler seperti protease, amilase, mananase, dan α-glaktosidase. Bahan organik dari substrat digunakan oleh Aspergillus niger untuk aktivitas transport molekul, pemeliharaan struktur sel, dan mobilitas sel.

Aspergillus niger


aspergillusnigerAspergillus niger merupakan salah satu spesies yang paling umum dan mudah diidentifikasi dari genus Aspergillus, famili Moniliaceae, ordo Monoliales dan kelas Fungi imperfecti. Aspergillus niger dapat tumbuh dengan cepat, diantaranya digunakan secara komersial dalam produksi asam sitrat, asam glukonat dan pembuatan berapa enzim seperti amilase, pektinase, amiloglukosidase dan sellulase. Aspergillus niger dapat tumbuh pada suhu 35ºC-37ºC (optimum), 6ºC-8ºC (minimum), 45ºC-47ºC (maksimum) dan memerlukan oksigen yang cukup (aerobik). Aspergillus niger memiliki bulu dasar berwarna putih atau kuning dengan lapisan konidiospora tebal berwarna coklat gelap sampai hitam. Kepala konidia berwarna hitam, bulat, cenderung memisah menjadi bagian-bagian yang lebih longgar dengan bertambahnya umur. Konidiospora memiliki dinding yang halus, hialin tetapi juga berwarna coklat.
Aspergillus niger memerlukan mineral (NH4)2SO4, KH2PO4, MgSO4, urea, CaCl2.7H2O, FeSO4, MnSO4.H2O untuk menghasilkan enzim sellulase. Sedangkan untuk enzim amilase khususnya amiglukosa diperlukan (NH4)2SO4, KH2PO4 .7H2O, Zn SO4, 7H2O. Bahan organik dengan kandungan nitrogen tinggi dapat dikomposisi lebih cepat dari pada bahan organik yang rendah kandungan nitrogennya pada tahap awal dekomposisi. Tahap selanjutnya bahan organik yang rendah kandungan nitrogennya dapat dikomposisi lebih cepat daripada bahan organik dengan kandungan nitrogen tinggi. Penurunan bahan organik sebagai sumber karbon dan nitrogen disebabkan oleh Aspergillus niger sebagai sumber energinya untuk bahan penunjang pertumbuhan atau Growth factor.
Aspergillus niger dalam pertumbuhannya berhubungan langsung dengan zat makanan yang terdapat dalam substrat, molekul sederhana yang terdapat disekeliling hifa dapat langsung diserap sedangkan molekul yang lebih kompleks harus dipecah dahulu sebelum diserap ke dalam sel, dengan menghasilkan beberapa enzim ekstra seluler. Bahan organik dari substrat digunakan oleh Aspergillus niger untuk aktivitas transport molekul, pemeliharaan struktur sel dan mobilitas sel

Friday, March 30, 2012

statistik


Desile


Desile adalah nilai-nilai yang membagi segugus pengamatan menjadi sepuluh bagian yang sama. Nilai-nilai itu, dilambangkan dengan D1, D2, .....D9, mempunyai sifat bahwa 10% data jatuh dibawah D1, 20% data jatuh dibawah D2, ..., dan 90% data jatuh dibawah D9. Contoh : Hitung Desile yang ke-7 D7 untuk data-data yang terdapat pada tabel berikut ini  Jawab...
READ MORE

Quintile


Quintile adalah nilai-nilai yang membagi segugus pengamatan menjadi lima bagian sama besar. Nilai-nilai itu, yang dilambangkn dengan Q1, Q2, Q3, dan Q4 mempunyai sifat bahwa 20% data jatuh dibawah Q1, 40% data jatuh dibawah Q2, 60% data jatuh dibawah Q3 dan 80% data jatuh dibawah Q4.  Sedangkan untuk menghitung Quintile dari data yang telah tersusun...
READ MORE

Quartile


Quartile adalah nilai-nilai yang membagi segugus pengamatan menjadi empat bagian sama besar. Nilai-nilai itu, yang dilambangkan dengan Q1, Q2, dan Q3, mempunyai sifat bahwa 25% data jatuh dibawah Q1, 50% data jatuh dibawah Q2, dan 75% data jatuh dibawah Q3. Contoh : Perhatikan table umur aki mobil dibawah ini, dan cari Quartile ke 1 (Q1)...
READ MORE

Modus


Modus segugus pengamatan adalah nilai yang terjadi paling sering atau yang mempunyai frekuensi paling tinggi. Modus tidak selalu ada, hal ini bila semua pengamatan mempunyai frekuensi terjadi yang sama. Untuk data tertentu, mungkin saja terdapat beberapa dengan frekuensi tinggi, dan dalam hal demikian kita mempunyai lebih dari satu modu...
READ MORE

Median


Median adalah salah satu ukuran pemusatan yang sering digunakan. Median dari segugus data yang telah diurutkan dari yang terkecil sampai yang terbesar atau dari terbesar sampai terkecil adalah pengamatan yang tepat di tengah-tengah bila banyaknya pengamatan itu ganjil, atau rata-rata kedua pengamatan yang di tengah bila banyaknya pengamatan genap. contoh...
READ MORE

Ukuran Pemusatan Rata-rata Hitung


Didalam bagian ini dibicarakan mengenai harga rata-rata hitung (arithmetic mean), dimana harga rata-rata ini dapat digunakan untuk data yang tak tersusun (ungrouped data), yaitu data yang belum tersusun distribusi frekuensinya, ataupun data yang telah tersusun dalam bentuk distribusi frekuensi (grouped data). Rata-rata hitung dikenal juga sebagai...
READ MORE

Ukuran Statistika


Ukuran Statistika. Teknologi dan notasi yang digunakan statistikawan dalam mengolah data statistik sepenuhnya bergantung pada apakah data tersebut merupakan populasi atau suatu contoh yang diambil dalam dari suatu populasi. Parameter adalah sembarang nilai yang menjelaskan ciri populasi.Statistik adalah sembarang nilai yang menjelaskan ciri suatu contoh. Kemudian...
READ MORE


Jamur Tricoderma

Klasifikasi ilmiah
Kerajaan: Fungi

Divisi: Ascomycota
Upadivisi: Pezizomycotina

Kelas: Sordariomycetes

Ordo: Hypocreales

Famili: Hypocreaceae

Genus: Trichoderma
Persoon

Trichoderma sp. merupakan sejenis cendawan / fungi yang termasuk kelas ascomycetes. Trichoderma sp. memiliki aktivitas antifungal. Di alam, Trichoderma banyak ditemukan di tanah hutan maupun tanah pertanian atau pada substrat berkayu.
Kondisi optimum
Suhu optimum untuk tumbuhnya Trichoderma berbeda-beda setiap spesiesnya. Ada beberapa spesies yang dapat tumbuh pada temperatur rendah ada pula yang tumbuh pada temperatur cukup tinggi,kisarannya sekitar 7 °C – 41 °C.Trichoderma yang dikultur dapat bertumbuh cepat pada suhu 25-30 °C, namun pada suhu 35 °C cendawan ini tidak dapat tumbuh. Perbedaan suhu memengaruhi produksi beberapa enzim seperti karboksimetilselulase dan xilanase.
Kemampuan merespon kondisi pH dan kandungan CO2 juga bervariasi. Namun secara umum apabila kandungan CO2 meningkat maka kondisi pH untuk pertumbuhan akan bergeser menjadi semakin basa. Di udara, pH optimum bagi Trichoderma berkisar antara 3-7. Faktor lain yang memengaruhi pertumbuhan Trichoderma adalah kelembaban, sedangkan kandungan garam tidak terlalu memengaruhi Trichoderma. Penambahan HCO3- dapat menghambat mekanisme kerja Trichoderma.
Melalui uji biokimia diketahui bahwa dibandingkan sukrosa, glukosa merupakan sumber karbon utama bagi Trichoderma, sedangkan pada beberapa spesies sumber nitrogennya berasal dari ekstrak khamir dan tripton.
Karakteristik
Pada Trichoderma yang dikultur, Morfologi koloninya bergantung pada media tempat bertumbuh. Pada media yang nutrisinya terbatas, koloni tampak transparan, sedangkan pada media yang nutrisinya lebih banyak, koloni dapat terlihat lebih putih. Konidia dapat terbentuk dalam satu minggu, warnanya dapat kuning, hijau atau putih. Pada beberapa spesies dapat diproduksi semacam bau seperti permen atau kacang.
Reproduksi
Reproduksi aseksual Trichoderma menggunakan konidia. Konidia terdapat pada struktur konidiofor. Konidiofor ini memiliki banyak cabang. Cabang utama akan membentuk cabang. Ada yang berpasangan ada yang tidak. Cabang tersebut kemudian akan bercabang lagi, pada ujung cabang terdapat fialid. Fialid dapat berbentuk silindris, lebarnya dapat sama dengan batang utama ataupun lebih kecil. Fialid dapat terletak pada ujung cabang konidiofor ataupun pada cabang utama.
Konidia secara umum kering, namun pada beberapa spesies dapat berwujud cairan yang berwarna hijau bening atau kuning. Bentuknya secara umun adalah elips, jarang ditemukan bentuk globosa. Secara umum konidia bertekstur halus.
Pada Trichoderma juga ditemukan struktur klamidospora. Klamidospora ini diproduksi oleh semua spesies Trichoderma. Bentuknya secara umum subglobosa uniseluler dan berhifa, pada beberapa spesies, klamidosporanya berbentuk multiseluler. Kemampuan Trichoderma dalam memproduksi klamidospora merupakan aspek penting dalam proses sporulasi.
Mekanisme antifungal
Pada sebuah penelitian ditemukan bahwa Trichoderma merupakan salah satu jamur yang dapat menjadi agen biokontrol karena bersifat antagonis bagi jamur lainnya, terutama yang bersifat patogen. Aktivitas antagonis yang dimaksud dapat meliputi persaingan, parasitisme, predasi, atau pembentukkan toksin seperti antibiotik. Untuk keperluan bioteknologi, agen biokontrol ini dapat diisolasi dari Trichoderma dan digunakan untuk menangani masalah kerusakan tanaman akibat patogen.
Kemampuan dan mekanisme Trichoderma dalam menghambat pertumbuhan patogen secara rinci bervariasi pada setiap spesiesnya. Perbedaan kemampuan ini disebabkan oleh faktor ekologi yang membuat produksi bahan metabolit yang bervariasi pula.
Trichoderma memproduksi metabolit yang bersifat volatil dan non volatil. Metabolit non volatil lebih efektif dibandingkan dengan yang volatil. Metabolit yang dihasilkan Trichoderma dapat berdifusi melalui membran dialisis yang kemudian dapat mengham

Saturday, March 10, 2012

Mikrobiologi

Mikrobiologi

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Mikrobiologi adalah sebuah cabang dari ilmu biologi yang mempelajari mikroorganisme.[1] Objek kajiannya biasanya adalah semua makhluk (hidup) yang perlu dilihat dengan mikroskop, khususnya bakteri, fungi, alga mikroskopik, protozoa, dan Archaea. Virus sering juga dimasukkan walaupun sebenarnya tidak sepenuhnya dapat dianggap sebagai makhluk hidup.[2]
Mikrobiologi dimulai sejak ditemukannya mikroskop dan menjadi bidang yang sangat penting dalam biologi setelah Louis Pasteur dapat menjelaskan proses fermentasi anggur (wine) dan membuat serum rabies[2] Perkembangan biologi yang pesat pada abad ke-19 terutama dialami pada bidang ini dan memberikan landasan bagi terbukanya bidang penting lain: biokimia.
Penerapan mikrobiologi pada masa kini masuk berbagai bidang dan tidak dapat dipisahkan dari cabang lain karena diperlukan juga dalam bidang farmasi, kedokteran, pertanian, ilmu gizi, teknik kimia, bahkan hingga astrobiologi dan arkeologi.[1]

Sejarah Perkembangan Mikrobiologi

Ilustrasi dari mikroskop yang digunakan oleh Robert Hooke pada tahun 1664. Lensa objektif dipasang di ujung tuas pengatur (G), dengan fokus pada spesimen menggunakan lensa tunggal (1)

[sunting] Era Robert Hooke dan Antoni van Leeuwenhoek

Robert Hooke (1635-1703) adalah matematikawan, sejarawan alam, dan ahli mikroskopi asal Inggris.[2] Dalam bukunya yang terkenal, Micrographia (1665), Hooke mengilustrasikan struktur badan buah dari suatu jenis kapang[2] Ini adalah deskripsi pertama tentang mikroorganisme yang dipublikasikan.[2]
Wajah Antoni van Leewenhoek diabadikan dalam prangko di Belanda pada tahun 1937
Orang pertama yang melihat bakteri adalah Antoni van Leeuwenhoek (1632-1723), seorang pembuat mikroskop amatir berkebangsaan Belanda.[2] Pada tahun 1684, van Leeuwenhoek menggunakan mikroskop yang sangat kecil hasil karyanya sendiri untuk mengamati berbagai mikroorganisme dalam bahan alam.[2] Mikroskop yang digunakan Leeuwenhoek kala itu berupa kaca pembesar tunggal berbentuk bikonveks dengan spesimen yang diletakkan di antara sudut apertura kecil pada penahan logam.[3] Alat itu dipegang dekat dengan mata dan objek yang ada di sisi lain lensa disesuaikan untuk mendapatkan fokus[3]. Dengan alat itulah, Leewenhoek mendapatkan kontras yang sesuai antara bakteri yang mengambang dengan latar belakang sehingga dapat dilihat dan dibedakan dengan jelas[3]. Beliau menemukan bakteri di tahun 1676 saat mempelajari infusi lada dan air (pepper-water infusion).[2]Van Leeuwenhoek melaporkan temuannya itu lewat surat pada Royal Society of London, yang dipublikasikan dalam bahasa Inggris pada tahun 1684.[2] Ilustrasi van Leewenhoek tentang mikroorganisme temuannya dikenal dengan nama "wee animalcules".[2]

[sunting] Era Pasteur

Skema percobaan Pasteur
Bertahun-tahun setelahnya, banyak observasi lain yang menegaskan hasil pengamatan van Leeuwenhoek, namun peningkatan tentang pemahaman sifat dan keuntungan mikroorganisme berjalan sangat lambat sampai 150 tahun berikutnya.[2] Baru di abad ke 19, yaitu setelah produksi mikroskop meningkat pesat, barulah keingintahuan manusia akan mikroorganisme mulai berkembang lagi.[2] Louis Pasteur dikenal luas karena teori Generatio Spontanea, organisme hidup berasal dari organisme hidup juga.[2] Percobaan Pasteur menggunakan kaldu yang disterilkan dan labu leher angsa membuktikan tentang adanya mikroorganisme.[2]

[sunting] Era Robert Koch

Sejak abad ke-16, telah diketahui bahwa ada suatu agen penyebab penyakit yang dapat menularkan penyakit.[2] Setelah penemuannya, dipercaya bahwa mikroorganisme adalah agen yang dimaksud, namun belum ada pernah ada bukti.[2] Robert Koch (1842-1910), seorang dokter berkebangsaan Jerman adalah orang pertama yang menemukan konsep hubungan antara penyakit menular dan mikroorganisme dengan menyertakan bukti eksperimental.[4][2] Konsep yang dikemukan oleh Koch dikenal sebagai Postulat Koch dan kini menjadi standar emas penentuan penyakit menular. [2]

[sunting] Era Mikrobiologi Umum

Mikrobiologi umum merujuk pada aspek mikrobiologi non medis.[2] Dua raksasa yang dikenal pada era ini adalah Beijerinck dan Winogradsky.[2] Keduanya memulai aspek mikrobiologi lingkungan [5]

[sunting] Martinus Beijerinck dan Teknik Kultur Pengkayaan

Martinus Beijerinck (1851-1931) adalah profesor berkebangsaan Belanda yang berkontribusi besar terhadap teknik kultur pengkayaan.[2] Pada teknik ini, mikroorganisme diisolasi dari alam dan ditumbuhkan di laboratorium dengan memanipulasi nutrisi dan kondisi inkubasinya.[2] Dengan menggunakan teknik ini, Beijerinck berhasil mengisolasi kultur murni berbagai mikroorganisme air dan tanah untuk pertama kalinya.[2]

[sunting] Sergei Winogradsky dan Konsep Kemolitotrofi

Pekerjaan Sergei Winogradsky (1856-1953), asal Rusia, mirip dengan yang dilakukan Beijerinck, namun beliau mendalami bakteri yang terlibat dalam siklus nitrogen dan siklus sulfur.[2] Konsep kemolitotrofi yang dicetuskannya berkaitan dengan adanya hubungan antara oksidasi senyawa anorganik dengan konservasi energi.[2] Dengan menggunakan teknik pengkayaan, Winogradsky berhasil mengisioalsi bakteri pengikat nitrogen, Clostridium pasteurianum yang bersifat anaerob, dan sebagai cikal bakal konsep fiksasi nitrogen.[2]

[sunting] Mikrobiologi Modern

Seorang pekerja di laboratorium sedang mengamati pertumbuhan bakteri pada cawan petri
Memasuki abad ke-20, mulai berkembang dua cabang mikrobiologi yang masih saling berhubungan: mikrobiologi dasar (basic) dan mikrobiologi teraplikasi (applied).[2] Mikrobiologi dasar mengacu pada penemuan-penemuan baru di bidang ini.[2] Sedangkan mikrobiologi teraplikasi mengacu pada aspek pemecahan masalah (problem solving) yang berhubungan dengan bidang ini.[2] Sejak ditemukannya konsep tentang DNA maka bidang mikrobiologi pun memasuki era molekuler.[2] Keberhasilan sekuensing DNA berhasil mengungkap hubungan filogenetik (evolusi) di antara berbagai jenis bakteri.[2]

[sunting] Istilah yang dipakai pada anti mikroorganisme

Bakteriostatik : Kemampuan menghambat perkembangbiakan bakteri temporer. [6] Jadi pada saat zat ini tidak ada, bakteri dapat berkembangbiak kembali
Bakterisidal : Bahan kimia yang mematikan bakteri secara permanen. [6] Disinfektan : Bahan - bahan kimia yang digunakan untuk mematikan mikroorganisme patogen yang ada pada benda mati. [6]
Steril : Bebas dari kehidupan mikroorganisme patogen. [7] Septik : Adanya bakteri patogen di dalam jaringan hidup yang dalam suatu proses infeksi.[8]

[sunting] Mekanisme kerja dari zat anti mikroorganisme

  1. Perusakan DNA
  2. Denaturasi protein
  3. Gangguan pada gugus Sulfhidirl
  4. Antagonisme kimiawi
  5. perusakan pada dinding sel bakteri

[sunting] Faktor - faktor yang memengaruhi resistensi mikroorganisme terhadap Zat - zat Antimikroorganisme

  1. Unsur - unsur Fisik, yang meliputi :
    1. Panas
    2. Penyinaran oleh sinar uv
    3. pendinginan pada suhu yang standar
  2. Unsur - unsur kimia, yang meliputi :
    1. Alkohol
    2. Ion logam berat
    3. Detergen
    4. Oksidator

POROSITAS TANAH

Definisi dan Pengertian dari Porositas Tanah adalah ruang volume seluruh pori-pori makro dan mikro dalam tanah yang dinyatakan dalam persentase volume tanah di lapangan. Dengan kata lain porositas tanah adalah bagian dari volume tanah yang tidak ditempati oleh padatan tanah.


Porositas tanah ada karena bentuk dan ukuran agregat tanah yang tidak dapat saling merapa merupakan dasar dari pori-pori tanah. Merupakan ruang antara agregat yang satu dengan yang lain disebut pori-pori mikro dan makro tanah.
Menurut ukuran pori-pori dapat dibedakan sebagai berikut :
  • Makro porositas yang dibentuk oleh rongga-rongga besar yang dalam keadaan normal terisi udara. Bila tanah terisi air sampai terlalu basah maka tanaman akan mati lemas atau tumbuhnya menjadi kerdil.
  • Mikro porositas yang merupakan rongga-rongga paling halus yang biasanya terisi air kapiler.
Tanah pasir mempunyai porositas kurang dari 50%, dengan jumlah pori-pori makro lebih besar dari pada pori-pori mikro, bersifat mudah merembes air dan gerakan udara di dalam tanah menjadi lebih lancar. Sebaliknya berliat mempunyai porositas lebih dari 50%.
Jumlah pori-pori mikro lebih besar dan bersifat mundah menangkap air hujan, tetapi sulit merembeskan air dan gerakan udara lebih terbatas. Untuk pertumbuhan tanaman menghendaki keseimbangan antara porositas makro dan mikro. Pada tanah yang baik mikro porositas 60% dari pada seluruh porositas. Porositas sangat dipengaruhi oleh tekstur tanah, struktur tanah, kedalaman tanah, dan pengolahan tanah.

Kemasaman Tanah (pH Tanah)

pH tanah atau kemasaman tanah atau reaksi tanah menunjukkan sifat kemasaman atau alkalinitas tanah yang dinyatakan dengan nilai pH. Nilai pH menunjukkan banyaknya konsentrasi ion hidrogen (H +) di dalam tanah. Makin tinggi kadar ion H+ di dalam tanah, semakin masam tanah tersebut. Di dalam tanah selain ion H+ dan ion-ion lain terdapat juga ion hidroksida (OH-), yang jumlahnya berbanding terbalik dengan banyaknya ion H+. Pada tanah-tanah masam jumlah ion H+ lebih tinggi dibandingakan dengan jumlah ion OH-, sedangkan pada tanah alkalis kandungan ion OH- lebih banyak dari ion H+. Jika ion H+ dan ion OH- sama banyak di dalam tanah atau seimbang, maka tanah bereaksi netral.
          
Pentingnya pH tanah untuk diketahui, yaitu untuk :
  • Menentukan mudah tidaknya unsur hara mudah diserap oleh tanaman. Pada umumnya unsur hara mudah diserap oleh akar tanaman pada pH tanah sekitar netral, karena pada pH netral tersebut kebanyakan unsur hara mudah larut di dalam air. Sebagai contoh pada tanah masam unsur P tidak dapat diserap oleh tanaman karena diikat oleh unsur Al, sedangkan pada tanah alkalis unsur   P juga tidak dapat diserap oleh tanaman karena diikat oleh unsur Ca.
  • Menunjukkan kemungkinan adanya unsur-unsur beracun
  • Mempengaruhi perkembangan mikroorganisme.
  • Jumlah Kebutuhan Unsur Hara

    Berdasarkan jumlah yang diperlukan tanaman, Unsur hara dibagi menjadi dua golongan, yakni unsur hara makro dan unsur hara mikro. Unsur hara makro adalah unsur hara yang diperlukan dalam jumlah banyak (konsentrasi 1000 mg/kg bahan kering). Unsur hara mikro adalah unsur hara yang diperlukan dalam jumlah sedikit (konsentrasi kurang dari atau sama dengan 100 mg/kg bahan kering).
    Unsur hara makro dibutuhkan tanaman dan terdapat dalam jumlah yang lebih besar, dibandingkan dengan unsur hara mikro. Davidescu (1988) mengusulkan bahwa batas perbedaan unsur hara makro dan mikro adalah 0,02 % dan bila kurang disebut unsur hara mikro. Ada juga unsur hara yang tidak mempunyai fungsi pada tanaman, tetapi kadarnya cukup tinggi dalam tanaman dan tanaman yang hidup pada suatu tanah tertentu selalu mengandung unsur hara tersebut misalnya unsur hara Al (Almunium), Ni (Nikel) dan Fe (Besi). Unsur hara C diperlukan dalam jumlah 43,6%, O sebanyak 44,4% dan H sebanyak 6,2%.
    Berdasarkan sumber penyerapannya, unsur hara dipilahkan menjadi dua, yakni unsur hara yang diserap dari udara dan unsur hara yang diserap dari tanah.
  • Diserap dari Udara
Unsur hara yang diserap dari udara adalah C, O, dan S, yaitu berasal dari CO2, O2, dan SO2, Penyerapan N baik dari udara maupun dari tanah diasimilasikan dalam proses reduksi dan aminasi. Nitrogen (N) udara diserap dari N2 bebas lewat bakteri bintil akar dan NH3 diserap lewat stomata tanaman.
  •  Diserap dari tanah
Penyerapan unsur hara dilakukan oleh akar tanaman dan diambil dari kompleks jerapan tanah ataupun dari larutan tanah berupa kation dan anion. Adapula yang dapat diserap dalam bentuk khelat yaitu ikatan kation logam dengan senyawa organik. Dewasa ini kebanyakan unsur hara mikro diberikan lewat daun. 

Jumlah Kebutuhan Unsur Hara

Berdasarkan jumlah yang diperlukan tanaman, Unsur hara dibagi menjadi dua golongan, yakni unsur hara makro dan unsur hara mikro. Unsur hara makro adalah unsur hara yang diperlukan dalam jumlah banyak (konsentrasi 1000 mg/kg bahan kering). Unsur hara mikro adalah unsur hara yang diperlukan dalam jumlah sedikit (konsentrasi kurang dari atau sama dengan 100 mg/kg bahan kering).
Unsur hara makro dibutuhkan tanaman dan terdapat dalam jumlah yang lebih besar, dibandingkan dengan unsur hara mikro. Davidescu (1988) mengusulkan bahwa batas perbedaan unsur hara makro dan mikro adalah 0,02 % dan bila kurang disebut unsur hara mikro. Ada juga unsur hara yang tidak mempunyai fungsi pada tanaman, tetapi kadarnya cukup tinggi dalam tanaman dan tanaman yang hidup pada suatu tanah tertentu selalu mengandung unsur hara tersebut misalnya unsur hara Al (Almunium), Ni (Nikel) dan Fe (Besi). Unsur hara C diperlukan dalam jumlah 43,6%, O sebanyak 44,4% dan H sebanyak 6,2%.
Berdasarkan sumber penyerapannya, unsur hara dipilahkan menjadi dua, yakni unsur hara yang diserap dari udara dan unsur hara yang diserap dari tanah.
  • Diserap dari Udara
Unsur hara yang diserap dari udara adalah C, O, dan S, yaitu berasal dari CO2, O2, dan SO2, Penyerapan N baik dari udara maupun dari tanah diasimilasikan dalam proses reduksi dan aminasi. Nitrogen (N) udara diserap dari N2 bebas lewat bakteri bintil akar dan NH3 diserap lewat stomata tanaman.
  •  Diserap dari tanah
Penyerapan unsur hara dilakukan oleh akar tanaman dan diambil dari kompleks jerapan tanah ataupun dari larutan tanah berupa kation dan anion. Adapula yang dapat diserap dalam bentuk khelat yaitu ikatan kation logam dengan senyawa organik. Dewasa ini kebanyakan unsur hara mikro diberikan lewat daun. 

Lengas Tanah

Lengas tanah atau kelembaban tanah merupakan air yang terikat secara adsorbtif pada permukaan butir-butir tanah. Menurut Daniel et al. (1979) penyerapan air oleh perakaran tergantung pada persediaan kelembaban air dalam tanah. Kapasitas simpanan tanah tergantung pada tekstur, kedalaman dan struktur tanah. Ketersediaan lengas tanah tergantung pada potensial air, distribusi akar dan suhu.
          
Lengas tanah tersedia bagi akar dalam dua cara, yaitu : akar tumbuh ke dalam tanah atau lengas bergerak ke akar.  Aktivitas akar tidak diketahui dengan baik karena seluruh informasi terbenam dalam tanah dan sangat sedikit usaha untuk menggalinya kecuali untuk mengukur panjang, kedalaman dan volume tanah yang ditempati (Daniel et al., 1979).

Selanjutnya menurut Daniel et al. (1979), untuk pohon, ada dua periode umum pertumbuhan akar, di musim semi dan di musim gugur, dengan beberapa pertumbuhan di musim panas dan musim dingin. Jika pertumbuhan akar lambat di musim panas ketika kebutuhan lengas tertinggi, gerakan air ke akar harus merupakan faktor dalam   menyediakan kebutuhan pohon.

Pergerakan Hara di dalam Tubuh Tanaman (Penyerapan Unsur Hara)

Bentuk akar yang bulat panjang seperti benang ternyata paling penting bagi penyerapan air dan unsur hara yang terlarut dalam larutan tanah. Selain akar yang berbentuk benang, Rambut Akar juga ikut menyerap ion dan air. Pergerakan air dan unsur hara yang terlarut di dalamnya ke bagian muda akar berhubungan dengan lintasan Apoplas dan Simplas.
Lintasan apoplas terutama mengikutsertakan difusi dan aliran masa air dari sel ke sel melalui ruang di antara polisakarida dinding sel. Diyakini bahwa lintasan apoplas selalu berlanjut dari rambut akar atau sel epidermis lain ke endodermis. Pita Caspary endodermis yang kedap air memaksa semua bahan masuk ke sel endodermis melintasi membrane plasma. Artinya bahwa membrane plasma sel endodermis merupakan batas akhir bagi akar untuk mengendalikan masuknya unsur hara terlarut.         
Lintasan simplas dari sel rambut akar ke endodermis dan melintas sepanjang endodermis itu ke sel xylem mati yang tak bermembran plasma. Tapi, akar sebagian besar angiosperma memiliki pita Caspary lain di hypodermis, yang disebut eksodermis. Pita ini berkembang dan menjadi dewasa di daerah yang lebih jauh dari ujung akar (sampai 12 cm), tidak seperti pita serupa di endodermis, sehingga pita itu terletak di daerah akar primer yang agak tua, tapi yang belum kehilangan sel luarnya. Eksodermis ini membatasi pergerakan zat warna dan ion sulfat menuju korteks, sehingga keberadaannya merupakan titik kendali penting yang mendorong zat terlarut luar terserap oleh membran plasma tertentu di sel eksodermis. Setelah berada di dalam sitosol eksodermis, ion dapat bergerak menuju xylem dari sel ke sel melalui lintasan simplas.
Ion yang diserap oleh sel epidermis dan bergerak menuju xylem melalui jalur simplas haruslah menembus epidermis, eksodermis, beberapa sel korteks, endodermis dan akhirnya perisiklus. Tiap pergerakan dari sel hidup yang satu ke sel yang lain dapat meliputi pengangkutan langsung yang menembus kedua dinding primer, lamela tengah diantaranya, serta kedua membram plasma dari sel yang berdampingan. Atau ion dapat bergerak melalui plasmodesmata berbentuk tabung yang menembus dinding sel yang bersebelahan dan lamela tengah di antaranya pada hampir semua sel tumbuhan hidup.

Metode untuk Mengetahui
Status Hara Tanaman

  1. Analisis Abu/Unsur dalam Bahan Kering Tumbuhan. Bagian tumbuhan yang baru dipanen dipanaskan dengan suhu 1000C selama 1 atau 2 hari, maka seluruh air  dalam bagian tumbuhan tersebut akan menguap. Bahan kering yang tinggal adalah Polisakarida dan Lignin di dinding sel; dan Protein, Lipid, asam Amino, asam organic dan ion kalium di sitoplasma. Setelah itu dimasukkan ke tungku dengan suhu 6000C selama beberapa jam sampai yang tinggal adalah Abu berwarna keputihan. Abu ini adalah zat anorganik sebanyak 1% dari berat kering tumbuhan, namun Nitrogen sudah menguap ketika dipanaskan dalam tungku tadi. Lalu abunya dianalisis ternyata mengandung kira-kira 60 unsur hara.
  2. Penanaman di : a. Air (hidroponik/biakan larutan, seperti larutan Sach, Knop Tottingham, dll). Caranya :  1. Stek ditanam dalam botol Erlenmeyer yang diisi larutan. 2. Stek ke-2 dimasukkan dalam botol Erlenmeyer lain yang diisi air. 3. Kemudian hasil pertumbuhan ke-2nya dibandingkan. b. Pasir (prosesnya sama dengan pada air, namun air diganti dengan pasir).
  3. Uji Cepat tanaman (Uji cepat Nitrogen, Fosfor dan Kalium)

    Unsur Hara Nitrogen (N)

    Nitrogen merupakan elemen hara yang penting bagi pertumbuhan tanaman. Sumber utama Nitrogen di dalam tanah yaitu bahan organik tanah. Selain dari bahan organik tanah Nitrogen juga diperoleh dari gas N2 di atmosfer melalui penambatan atau fiksasi Nitrogen. Penambatan alami disebabkan oleh jasad-jasad renik (terutama bakteri dalam tanah dan alga di air) dan gejala atmosfer tertentu, termasuk kilat.
    Bentuk Nitrogen yang dapat digunakan oleh tanaman adalah ion nitrat (NO3-) dan ion amonium (NH4+). Ion-ion ini kemudian membentuk material kompleks seperti asam-asam amino dan asam-asam nukleat yang dapat langsung diserap dan digunakan oleh tanaman tingkat tinggi. Menurut Mengel dan Kirby (1987) dalam Rosmarkam dan Yuwono (2002) pada pH tanah yang rendah ion nitrat lebih cepat diserap oleh tanaman dibandingkan ion amonium, pada pH tanah yang tinggi ion Amonium diserap oleh tanaman lebih cepat dibandingkan ion nitrat dan pada pH netral kemungkinan penyerapan keduanya berlangsung seimbang.
                Fungsi Nitrogen bagi pertumbuhan tanaman adalah memperbaiki pertumbuhan vegetatif tanaman. Tanaman yang tumbuh pada tanah yang cukup N, berwarna lebih hijau. Selain itu Nitrogen berfungsi dalam pembentukan protein. 

    Unsur Hara Fosfor (P)

    Fosfor (P) merupakan unsur hara yang diperlukan  dalam jumlah besar (hara makro). Jumlah fosfor dalam tanaman lebih kecil dibandingkan Nitrogen dan Kalium. Tetapi fosfor dianggap sebagai kunci kehidupan (Key of life). Unsur Fosfor di tanah berasal dari bahan organik, pupuk buatan dan mineral-mineral di dalam tanah (apatit).

    Tanaman menyerap fosfor dalam bentuk ion ortofosfat (H2PO4-) dan ion ortofosfat sekunder (HPO4=). Menurut Tisdale (1985) dalam Rosmarkam dan Yuwono (2002) unsur P masih dapat diserap dalam bentuk lain, yaitu bentuk pirofosfat dan metafosfat, bahkan menurut Thomson (1982) dalam Rosmarkam dan Yuwono (2002) bahwa kemungkinan unsur P diserap dalam bentuk senyawa oraganik yang larut dalam air, misalnya asam nukleat dan phitin.
    Fosfor yang diserap tanaman dalam bentuk ion anorganik cepat berubah menjadi senyawa fosfor organik. Fosfor ini mobil atau mudah bergerak antar jaringan tanaman. Kadar optimal fosfor dalam tanaman pada saat pertumbuhan vegetatif adalah 0.3% - 0.5% dari berat kering tanaman.

    Unsur Hara Kalium


    Kalium (K) merupakan unsur hara utama ketiga setelah N dan P. Kalium mempunyai valensi satu dan diserap dalam bentuk ion K+. Kalium tergolong unsur yang mobil dalam tanaman baik dalam sel, dalam jaringan tanaman, maupun dalam xylem dan floem. Kalium banyak terdapat dalam sitoplasma. Kalium  pupuk buatan dan mineral-mineral tanah seperti feldspar, mika dan lain-lain.
    Secara umum fungsi Kalium bagi tanaman, antara lain :
  4. Membentuk dan mengangkut karbohidrat,
  5. Sebagai katalisator dalam pembentukan protein
  6. Mengatur kegiatan berbagai unsur mineral
  7. Menetralkan reaksi dalam sel terutama dari asam organik
  8. Menaikan pertumbuhan jaringan meristem
  9. Mengatur pergerakan stomata
  10. Memperkuat tegaknya batang sehingga tanaman tidak mudah roboh
  11. Mengaktifkan enzim baik langsung maupun tidak langsung
  12. Meningkatkan kadar karbohidrat dan gula dalam buah
  13. Membuat biji tanaman menjadi lebih berisi dan padat
  14. Meningkatkan kualitas buah karena bentuk, kadar, dan warna yang lebih baik
  15. Membuat tanaman menjadi lebih tahan terhadap hama dan penyakit
  16. Membantu perkembangan akar tanaman.
Kekurangan kalium pada tanaman menyebabkan turgor tanaman menjadi berkurang sehingga sel tanaman menjadi lemah. 

Pemupukan Tanaman

Pemupukan adalah tindakan memberikan tambahan unsur-unsur hara pada komplek tanah, baik langsung maupun tak langsung dapat menyumbangkan bahan makanan pada tanaman. Tujuannya untuk memperbaiki tingkat kesuburan tanah agar tanaman mendapatkan nutrisi yang cukup untuk meningkatkan kualitas dan kuantitas pertumbuhan tanaman.

Tanaman diberikan pemupukan, jika :
  1. Tanah miskin hara
  2. Pertumbuhan tanaman terhambat walaupun sudah dilakukan penyiangan dan ditemukan gejala kekurangan unsur hara.
  3. Pertumbuhan tanaman perlu dipercepat untuk mengurangi resiko akibat persaingan dengan gulma.
  4. Ingin meningkatkan hasil pertambahan pertumbuhan (riap volume) per satuan luas pada akhir daur. 


Pemupukan Tanaman

Pemupukan adalah tindakan memberikan tambahan unsur-unsur hara pada komplek tanah, baik langsung maupun tak langsung dapat menyumbangkan bahan makanan pada tanaman. Tujuannya untuk memperbaiki tingkat kesuburan tanah agar tanaman mendapatkan nutrisi yang cukup untuk meningkatkan kualitas dan kuantitas pertumbuhan tanaman.

Tanaman diberikan pemupukan, jika :
  1. Tanah miskin hara
  2. Pertumbuhan tanaman terhambat walaupun sudah dilakukan penyiangan dan ditemukan gejala kekurangan unsur hara.
  3. Pertumbuhan tanaman perlu dipercepat untuk mengurangi resiko akibat persaingan dengan gulma.
  4. Ingin meningkatkan hasil pertambahan pertumbuhan (riap volume) per satuan luas pada akhir daur.

Dalam sistem agroforestri terdapat interaksi ekologis dan ekonomis antara komponen-komponen yang berbeda. Agroforestri ditujukan untuk memaksimalkan penggunaan energi matahari, meminimalkan hilangnya unsur hara di dalam sistem, mengoptimalkan efesiensi penggunaan air dan meminimalkan runoff serta erosi. Dengan demikian mempertahankan manfaat-manfaat yang dapat diberikan oleh tumbuhan berkayu tahunan (perennial) setara dengan tanaman pertanian kon- vensional dan juga memaksimalkan keuntungan keseluruhan yang dihasilkan dari lahan sekaligus mengkonservasi dan menjaganya.

agroforestri
Menurut Young dalam Suprayogo et al (2003) ada empat keuntungan terhadap tanah yang diperoleh melalui penerapan agroforestri antara lain adalah:

(1) memperbaiki kesuburan tanah,
(2) menekan terjadinya erosi
(3) mencegah perkembangan hama dan penyakit,
(4) menekan populasi gulma.

Peran utama agroforestri dalam mempertahankan kesuburan tanah, antara lain melalui empat mekanisme:

(1) mempertahankan kandungan bahan organik tanah,
(2) mengurangi kehilangan hara ke lapisan tanah bawah,
(3) menambah N dari hasil penambatan N bebas dari udara,
(4) memperbaiki sifat fisik tanah,

Teknik konservasi tanah dan air pada daerah berlereng dilakukan dengan pembuatan terasering atau melakukan penanaman mengikuti garis kontur di dalam lorong dengan menggunakan tanaman penyangga berupa campuran tanaman tahunan (perkebunan, buah-buahan, polong-polongan dan tanaman industri) sayuran dan rumput untuk pakan ternak.

Sistem penamaman agroforestri pada daerah berlereng dapat menggunakan Sistem Sloping Agricultural Land Technology (SALT), suatu bentuk Alley Cropping (tanaman lorong). Sistem SALT diselenggarakan dalam suatu proyek di Mindanao Baptist Rural Life Center Davao Del Sur. Dalam proyek ini, dapat ditunjukkan bahwa cara bercocok tanam dan pengaturan letak tanaman, terutama di daerah berlereng, sangat berperan dalam konservasi tanah dan air, serta produksi hasil pertaniannya. Penggunaan mulsa lamtoro (Leucaena leucocephala) dapat meningkatkan kesuburan tanah dan pendapatan petani, sedangkan bahaya erosi dapat diperkecil. Pendapatan para petani dapat meningkat dua kali setelah mengikuti semua aturan yang ditentukan selama empat tahun.

Pokok-pokok aturan dalam penyelenggaraan SALT adalah sebagai berikut :

1. Penanaman lamtoro dua baris pada tanah yang telah diolah secara baik, dengan antara 0,5 meter. Setelah tingginya 3 - 4 meter dipangkas satu meter di atas tanah. Daun dan ranting lamtoro diletakkan di bawah tanaman tahunan atau areal / lajur tanaman pangan.

2. Jarak barisan tanaman lamtoro 4 - 6 meter, tergantung pada kemiringan lahan.

3. Tanaman keras ditanam bersamaan dengan lamtoro dengan cara cemplongan, jarak 4 - 7 meter.

4. Tanaman pangan dimulai setelah batang lamtoro sebesar jari. Pengolahan tanah untuk tanaman pangan dilakukan pada lajur/ lorong yang berselang-seling dengan lajur tanaman keras atau lajur yang tidak diolah.
SALT
Gambar. Sistem penanaman agroforestri pada daerah berlereng